Chemical Kinetics

- Thermodynamics can describe the final equilibrium position, but not how fast this situation will be achieved.

- Chemical kinetics is the science of the rates and mechanisms of chemical reactions.

- For a general reaction

\[aA + bB \rightarrow cC + dD \]

the rate is defined as

\[\frac{-1}{a} \frac{d[A]}{dt} = \frac{-1}{b} \frac{d[B]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = \frac{1}{d} \frac{d[D]}{dt} \]

- The rate law for a reaction expresses the dependence of the rate on the concentrations of the reactants.
What does the reaction rate depend on?

The rate of a chemical reaction depends on five features of the reaction:

1. The **nature** of the reactants.

 (For example, ionic reactions may be very fast, breaking strong bonds may cause a slow reaction.)

2. The **effective concentrations** of reactants.

3. The **temperature**.

 (Most reactions go faster at higher temperature.)

4. The presence of a **catalyst**.

 (Usually a catalyst speeds up a reaction. A good example: enzymes.)

5. The **phase** of the reaction.

 (Solid, liquid, and gas phase reactions occur.)
Rate law expressions

- For some reactions the rate law can be expressed in the simple form

\[
\text{rate} = k \ [A]^m[B]^n
\]

where \(k = k(T) \) is the "rate constant" for the reaction. The exponents \(m \) and \(n \) are the orders of the reaction with respect to reactants \(A \) and \(B \), respectively. The overall order of the reaction is \((m + n) \).

- It is important to understand that the rate law expression comes from experiment. It is not necessarily related to the stoichiometric expression for the reaction.

- Note that \(k \) will vary with temperature. The units of \(k \) will depend on the order of the reaction.

- Many reactions cannot be described by the simple rate law expression above.

- The rate law expression can help us to decide upon the mechanism of the reaction.
First Order reactions

- The rate law expression for a first-order reaction is

\[- \frac{d[A]}{dt} = k[A]\]

- Examples include nuclear decays, some isomerizations and some decompositions.

- To integrate the rate law expression we rearrange it:

\[\frac{d[A]}{[A]} = -k \, dt\]

Thus \[\int d[A]/[A] = -k \int dt.\]

- Integration from \([A]_0\) to \([A]\) and 0 to \(t\) yields

\[\ln[A] - \ln[A]_0 = -kt\]

So that

\[[A] = [A]_0 e^{-kt}\]
Carbon-14 Dating

- First proposed by the American chemist Willard Libby, Univ. of Chicago, in the 1950s. Awarded the Nobel Prize in Chemistry, 1960.

- Cosmic rays striking nitrogen atoms in the Earth's atmosphere cause the reaction

\[{}^{14}\text{N} + {}^{1}\text{n} \rightarrow {}^{14}\text{C} + {}^{1}\text{H} \]

- The ^{14}C becomes incorporated into CO_2, which in turn is taken up by living plants.

- The ^{14}C decays by first-order kinetics

\[{}^{14}\text{C} \rightarrow {}^{14}\text{N} + \text{e}^- \]

with a half-life of 5730 yr.

- So long as the plants are alive a steady-state of ^{14}C incorporation and decay is maintained, but upon death uptake of ^{14}C ceases.

- The age of an artifact can be estimated by measuring the relative amount of ^{14}C in the sample. Good for 1000-50,000 yr.
• Carbon has several isotopes with the following abundances and half-lives:

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Abundance</th>
<th>Half-life</th>
<th>Decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbon-9</td>
<td>0.1265 s</td>
<td>β⁺ 2α</td>
<td></td>
</tr>
<tr>
<td>carbon-10</td>
<td>19.2 s</td>
<td>β⁺</td>
<td></td>
</tr>
<tr>
<td>carbon-11</td>
<td>20.38 min</td>
<td>β⁺</td>
<td></td>
</tr>
<tr>
<td>carbon-12</td>
<td>98.89%</td>
<td>stable</td>
<td></td>
</tr>
<tr>
<td>carbon-13</td>
<td>1.11%</td>
<td>stable</td>
<td></td>
</tr>
<tr>
<td>carbon-14</td>
<td>ppm</td>
<td>5730 y</td>
<td>β⁻</td>
</tr>
<tr>
<td>carbon-15</td>
<td>2.449 s</td>
<td>β⁻</td>
<td></td>
</tr>
<tr>
<td>carbon-16</td>
<td>0.75 s</td>
<td>β⁻</td>
<td></td>
</tr>
</tbody>
</table>

• Since \(x = x_0 e^{-kt} \) we can calculate the age from the ratio \(x/x_0 \). The half-life is given by \(t_{1/2} = \ln 2/k_\), so \(k = \ln(2)/t_{1/2} = 0.693/5730 \text{ y} = 1.21\times10^{-4}/\text{y} \). Thus \(t = -\ln(x/x_0)/k \).

• Consider a sample that exhibits 63\% of the \(^{14}\text{C}\) radioactivity of a fresh sample. Then

\[
t = \left[\frac{\ln(0.63)}{1.21\times10^{-4}} \right] \text{y} = 3820 \text{ y}
\]
Other Dating Techniques

• Uranium-238 has a half-life of 4.5×10^9 years. ^{238}U decays through several intermediates to form lead-206 (^{206}Pb).

---Assume that rocks start with only ^{238}U and no ^{206}Pb. Then measure the ratio of $^{238}\text{U}/^{206}\text{Pb}$. Analysis of this gives the age of the rock if your assumption is correct.

---Note that “normal” lead is lead-208, which will be present if other processes caused lead in the rocks.

• Potassium-argon dating of rocks: When ^{40}K decays to ^{40}Ar in rocks the ^{40}Ar is trapped. Potassium-40 has a half-life of 1.25×10^9 years. Assuming all the ^{40}Ar detected comes from ^{40}K decay, one can date a rock sample.

Some other methods: Thermoluminescence, fission track dating, amino acid racemization, etc.
First-Order decay

- The half-life is the time it takes for one half of the initial material to disappear. It is given by $t_{1/2} = \ln(2)/k$.

 ![Graph showing the decay of A over time with half-life indicated]

 - To derive the $t_{1/2}$ formula plug in $[A] = 0.5[A]_0$ and solve for t

 - For a first-order decay the half-life is independent of the starting time.

- The most useful way to plot the data for this case is $\ln[A]$ vs. t:

 $\ln[A] = \ln[A]_0 - kt$

 ![Graph showing ln[A] vs. t with slope indicated]