**1. (9) State whether each of the following pairs are constitutional isomers, stereoisomers or completely different molecules.

a) \(\text{O} \) and \(\text{H}_2\text{C=CH}_2 \)
a constitutional

b) \(\text{O} \) and \(\text{H}_2\text{C=CH}_2 \)
completely different

c) \(\text{CH}_3 \) and \(\text{CH}_3 \)
constitutional

**2. (5) Circle any statement in the box to the right that correctly describes the molecule shown.

**3. (5) Circle any of the following species that would be considered to be a strong Lewis Base?

**4. (12) Show the partial (use \(\delta^+ \) or \(\delta^- \)) or real charges (use + or -) that would be present in each of the following if a bond was formed between the pairs of atoms shown.

a) \(\text{P}^{\delta^+} \), \(\text{F}^{\delta^-} \)
b) \(\text{N}^- \), \(\text{Li}^+ \)
c) \(\text{Ca}^+ \), \(\text{S}^- \)
d) \(\text{O}^{\delta^-} \), \(\text{N}^{\delta^+} \)

**5. (12) Fill in any non-bonding valence electrons (lone pairs) missing from the following structures:

a)

b)

c)

**
6. (10) Provide a correct systematic (IUPAC) name for the following molecule. *In addition*, indicate how many primary, secondary and tertiary carbons are present in the molecule.

(CH₃)₂CHCH(CH₃)CH₂CH(CH₂CH₃)CH₂CH(CH₃)CH(CH₂CH₃)CH₂CH₃

5,8-diethyl-2,3,7-trimethyldecane

Seven primary; five secondary; five tertiary carbons

7. (8) In the following molecules, state what the hybridization is of the four indicated atoms.

a) b)

sp² sp³ sp²

8. (3.5) What is the overall shape of the molecule shown in question 7a above? Choices: tetrahedral; trigonal planar; linear.

9. (3) True or False? A molecule that is a constitutional isomer of another molecule could also be a stereoisomer of the other molecule.

10. (3) True or False? Hydrogens attached to electronegative atoms are more acidic than those attached to less electronegative elements.

11. (3) True or False? In general, the more hydrogen bonding present in a molecule the greater the water solubility.

12. (4) Draw the conjugate acid of Li⁺ ´OCH₃.

CH₃OH

13. (3) Which of the following isolated elements has 4 valence electrons?

- a) Oxygen, atomic number 8
- b) Fluorine, atomic number 9
- c) Silicon, atomic number 14
- d) Boron, atomic number 5

14. (13) Name the following molecules using any acceptable method.

a) b)

5-ethyl-1-methyl-2-propylcyclooctane 5,7-diethyl-6-isopropyl-2,3-dimethylnonane
**15. (3.5) Which side of this equilibrium is favored?

\[\text{CH}_3\text{OH} + \text{KO}_2\text{CCH}_3 \rightleftharpoons \text{KOCH}_3 + \text{CH}_3\text{CO}_2\text{H} \]

pKa = 16.5 \hspace{1cm} \text{pKa} = 5

(A) left (B) right

**16. (3.5) In question 15 above, CH₃CO₂H is acting as a(n) ?

(A) Acid (B) Base

**17. (3.5) In question 15 above, KOCH₃ is a ?

(A) Conjugate Acid (B) Conjugate Base

**18. (8) Circle any statement below that is true about carbon or its compounds.

a) Carbon has low electronegativity \hspace{1cm} b) Carbon tends to form ionic bonds

c) Carbon is neutral when it is tetravalently bonded \hspace{1cm} d) Alkanes dissolve well in water

**19. (4) Which of the following is closest to the B-F bond angle in BF₃?

a) 180° \hspace{1cm} b) 120° \hspace{1cm} c) 109.5° \hspace{1cm} d) 90°

**20. (8) In the molecule shown below, for each bond indicated with an arrow (2 examples), state the types of orbital, from each atom, which were used in making the bond.

N \text{ sp}^2 - \text{sp}^3 \text{ O}

H₂\text{C≡N} = \text{N} - \text{OH}

sigma bond only

N⁺ \text{ sp} - \text{sp}^2 \text{ N}
**21. (4.5) Circle the Newmann projection on the right that correctly represents the molecule shown on the left, viewed as indicated from the left.

![Molecules](image)

**22. (4) As the molecule shown in question 21 rotates it experiences what types of strain. Choose one or more from the following: angle; torsional; steric; constitutional.

**23. (7.5) Fill in the missing blanks in the following sentences using one of the suggestions in parentheses:

a) As we move from left to right in a row on the periodic table, electronegativity ________ (decreases, increases, doubles, stays the same).

b) As we move from top to bottom in a group on the periodic table, electronegativity ________ (decreases, increases, doubles, stays the same).

c) In a covalent bond, the greater the difference in electronegativity between the 2 atoms making the bond, the greater the ________ (hybridization, ionization, polarization, conformation).

**24. (3) True or False? In a carbon carbon triple bond, there will always be a sigma bond and two pi bonds.

**25. (7) Draw a reasonable structure for the following formula. Use only stick structures (aka line form).

C₄H₆O₂

e.g. ![Example Structures](image)